Monatshefte für Chemie 107, 367-369 (1976) © by Springer-Verlag 1976

On the Thermodynamics of Binary Liquid Mixtures of Scatchard—Hildebrand Type at Infinite Dilution

Short Communication

By

Ernst Liebermann and Emmerich Wilhelm

Institut für Physikalische Chemie, Universität Wien, Austria

(Received January 28, 1976)

The excess Gibbs free energy G^E of binary liquid nonassociated mixtures may, to a first approximation, be formally expressed as the sum of a quantity which will be designated by G^* containing the contribution of the intermolecular force fields, and of a combinatorial part G^{Ec} :

$$G^E = G^* + G^{Ec},\tag{1}$$

where $G^{Ec} = -T (\Delta S^c - \Delta S^{id})$ and ΔS^{id} is the ideal entropy of mixing. The combinatorial entropy ΔS^c was discussed recently by *Donohue* and *Prausnitz*¹ in terms of a generalized *Flory* model applicable to systems with molecules of arbitrary size and shape including as a limiting case the *Flory*-*Huggins* equation^{2, 3} for mixtures of chainlike molecules.

In the present context, nonassociated mixtures in which at all concentrations G^* is positive and its temperature derivative negative, are termed "Scatchard—Hildebrand type" mixtures.

In regular solutions G^* is related to the solubility parameters by the Scatchard—Hildebrand equation⁴

$$G^* = \frac{x_1 x_2 V_1 V_2 (\delta_1 - \delta_2)^2}{x_1 V_1 + x_2 V_2}, \qquad (2)$$

where x_1 and x_2 are the mole fractions, V_1 and V_2 the molar volumes of the pure liquid components. The solubility parameter of component *i* is denoted by $\delta_i = \sqrt{\Delta U_i v^{ap}/V_i}$, where $\Delta U_i v^{ap}$ is the energy change that accompanies isothermal vaporization of the saturated liquid to the ideal gas state.

If G^* is taken from eq. (2), ΔS^c represented by the simple *Flory*— *Huggins* term and the thermal expansivity of each component assumed to be equal to that of the mixture, α_m , one may derive⁵ the following relationship between the enthalpy of mixing H^E and G^* :

$$H^{E}/G^{*} = 1 + 1.5 \alpha_{m} T.$$
(3)

From eq. (3) it may be concluded

$$\lim_{x_i \to 0} (H^E/G^*) = 1 + 1.5 \, \alpha_m \, T, \quad (i = 1, 2). \tag{4}$$

Limiting values of H^E/G^* extrapolated from observed excess properties of mixing have been reported elsewhere⁵. Taking the average of the obtained results, one may write

$$\lim_{x_i \to 0} (H^E/G^*) = 2, \quad (i = 1, 2).$$
(5)

Eq. (5) is in fair agreement with eq. (4) found from the temperature dependence of the solubility parameters.

Funk and Prausnitz⁶ combined the relation between H^E , G^E and the excess volume V^E based on the regular solution theory⁴

$$H^E = G^E + V^E \alpha_m T / \beta_m, \tag{6}$$

 β_m being the isothermal compressibility of the mixture, with the following approximation which interrelates the limiting values of the excess volume $V_i^{E^{\infty}}$ and the excess chemical potential $\mu_i^{E^{\infty}}$ of component *i* at $x_i \to 0$

$$V_i^{E\infty} = \mu_i^{E\infty} \beta_j / (\alpha_j T), \quad (i \neq j).$$
(7)

 α_j and β_j are the thermal expansivity and the isothermal compressibility of component j, respectively.

To investigate the consequence of such a treatment to the value of H^E/G^E at infinite dilution, we rewrite eq. (6) into the form

$$H^{E}/G^{E} = 1 + (V^{E}/G^{E}) (\alpha_{m} T/\beta_{m}).$$
 (8)

The limiting value is then

$$\lim_{x_i \to 0} (H^E/G^E) = 1 + \lim_{x_i \to 0} (V^E/G^E) \lim_{x_i \to 0} (\alpha_m \ T/\beta_m), \tag{9}$$

where

$$\lim_{x_i \to 0} (\alpha_m T / \beta_m) = \alpha_j T / \beta_j, \quad (i \neq j).$$
(10)

From l'Hospital's rule it follows

$$\lim_{x_i \to 0} (H^E/G^E) = H_i^{E \infty} / \mu_i^{E \infty}$$
(11a)

$$\lim_{x_i \to 0} (V^E/G^E) = V_i^{E\infty}/\mu_i^{E\infty}.$$
 (11b)

368

Combination of eq. (11 b) with eq. (7) gives

$$\lim_{x_i \to 0} (V^E/G^E) = \beta_j/(\alpha_j T), \quad (i \neq j).$$
(12)

Using eq. (12) and eq. (10), we now reduce eq. (9) to

$$\lim_{x_i \to 0} (H^E/G^E) = 2, \quad (i = 1, 2).$$
(13)

It is interesting to note that in eq. (13) neither the expansivity, compressibility, nor the excess volume or the temperature appear as parameters. The approximation used in eq. (7) imposes, however, a restriction on the sign of the limiting values of the excess functions. Considering $\beta_i/(\alpha_i T) > 0$, the signs of $V_i^{E_{\infty}}$ and $\mu_i^{E_{\infty}}$ can not be different. Comparison of eq. (13) and eq. (11a) shows, on the other hand, that the sign of $H_i^{E^{\infty}}$ must agree with that of $\mu_i^{E^{\infty}}$ and, as a consequence. also agree with that of $V_i^{E^{\infty}}$.

Eq. (1) relates G^E to G^* . If ΔS^c is nearly ideal, then $G^E = G^*$ and eq. (13) becomes identical to the empirically obtained 5 eq. (5). It is possible to extend eq. (7) to include Scatchard—Hildebrand type solutions in which $H_i^{E\infty}$ and $V_i^{E\infty}$ are both positive and $\mu_i^{E\infty}$ may be negative, provided that $G^* > 0$ over the whole concentration range. Then in all relations the excess functions are to be replaced by G^* and its derivatives, H^E remaining unchanged ($H^E = H^*$), since the combinatorial part of eq. (1) does not contribute to the enthalpy of mixing. With regard to the restriction $G^* > 0$ required by the Scatchard— Hildebrand concept, the correlation scheme used by Funk and Prausnitz should not be applied to systems with $H_i^{E^{\infty}}$ or $V_i^{E^{\infty}} < 0$.

Knowledge of lim (H^E/G^*) at $x_i \to 0$ allows estimation of the enthalpy of mixing of binary nonassociated solutions at all compositions in cases where G^E is given at one temperature only⁵.

References

- ¹ M. D. Donohue and J. M. Prausnitz, Canad. J. Chem. 53, 1586 (1975).
- ² P. J. Flory, J. Chem. Phys. 10, 51 (1942).
- ³ M. L. Huggins, Ann. N. Y. Acad. Sci. 43, 1 (1942).
- ⁴ J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes. New York: Dover Publ. Inc. 1964.
- ⁵ E. Liebermann and V. Fried, Ind. Engng. Chem., Fundam. 11, 350 (1972).
- ⁶ E. W. Funk and J. M. Prausnitz, Ind. Engng. Chem. 62 (9), 8 (1970).

Correspondence and reprints: Dr. E. Liebermann Institut für Physikalische Chemie Universität Wien Währinger Straße 42 A-1090 Wien Austria

369