Monatshefte fiir Chemie 107, 367--369 (1976) 9 by Springer-Verlag 1976

On the Thermodynamics of Binary Liquid Mixtures of *Scatchard~Hildebrand* **Type at Infinite Dilution**

Short Communication

By

Ernst Liebermann and Emmerich Wilhelm

Institut für Physikalische Chemie, Universität Wien, Austria

(Received January 28, 1976)

The excess Gibbs free energy G^E of binary liquid nonassociated mixtures may, to a first approximation, be formally expressed as the sum of a quantity which will be designated by G^* containing the contribution of the intermolecular force fields, and of a combinatorial part *GEc:*

$$
G^E = G^* + G^{Ec},\tag{1}
$$

where $G^{Ec} = -T(\Delta S^c - \Delta S^{id})$ and ΔS^{id} is the ideal entropy of mixing. The combinatorial entropy ΔS^c was discussed recently by *Donohue* and *Prausnitz¹* in terms of a generalized *Flory* model applicable to systems with molecules of arbitrary size and shape including as a limiting case the *Flory--Huggins* equation 2, 3 for mixtures of chainlike molecules.

In the present context, nonassociated mixtures in which at all concentrations G^* is positive and its temperature derivative negative, are termed *"Scatchard--Hildebrand* type" mixtures.

In regular solutions G^* is related to the solubility parameters by the *Scatchard—Hildebrand* equation⁴

$$
G^* = \frac{x_1 x_2 V_1 V_2 (\delta_1 - \delta_2)^2}{x_1 V_1 + x_2 V_2}, \qquad (2)
$$

where x_1 and x_2 are the mole fractions, V_1 and V_2 the molar volumes of the pure liquid components. The solubility parameter of component i is denoted by $\delta_i = \sqrt{\Delta U_i^{vap}/V_i}$, where ΔU_i^{vap} is the energy change that accompanies isothermal vaporization of the saturated liquid to the ideal gas state.

If G^* is taken from eq. (2), ΔS^c represented by the simple *Flory*-*Huggins* term and the thermal expansivity of each component assumed to be equal to that of the mixture, α_m , one may derive⁵ the following relationship between the enthalpy of mixing H^E and G^* :

$$
H^E/G^* = 1 + 1.5 \alpha_m T. \tag{3}
$$

From eq. (3) it may be concluded

$$
\lim_{x_i \to 0} (H^E/G^*) = 1 + 1.5 \alpha_m T, \quad (i = 1, 2). \tag{4}
$$

Limiting values of $H^E/G*$ extrapolated from observed excess properties of mixing have been reported elsewhere 5. Taking the average of the obtained results, one may write

$$
\lim_{x_i \to 0} (H^E/G^*) = 2, \quad (i = 1, 2). \tag{5}
$$

Eq. (5) is in fair agreement with eq. (4) found from the temperature dependence of the solubility parameters.

Funk and *Prausnitz*⁶ combined the relation between H^E , G^E and the excess volume V^E based on the regular solution theory⁴

$$
H^E = G^E + V^E \propto_m T/\beta_m, \tag{6}
$$

 β_m being the isothermal compressibility of the mixture, with the following approximation which interrelates the limiting values of the excess volume $V_i^{E\infty}$ and the excess chemical potential $\mu_i^{E\infty}$ of component *i* at $x_i \rightarrow 0$

$$
V_i^{E\infty} = \mu_i^{E\infty} \beta_j/(\alpha_j T), \quad (i \neq j). \tag{7}
$$

 α_j and β_j are the thermal expansivity and the isothermal compressibility of component *j*, respectively.

To investigate the consequence of such a treatment to the value of H^E/G^E at infinite dilution, we rewrite eq. (6) into the form

$$
H^E/G^E = 1 + (V^E/G^E) (\alpha_m T/\beta_m).
$$
 (8)

The limiting value is then

$$
\lim_{x_i \to 0} (H^E/G^E) = 1 + \lim_{x_i \to 0} (V^E/G^E) \lim_{x_i \to 0} (\alpha_m T/\beta_m),
$$
\n(9)

where

$$
\lim_{x_i \to 0} (\alpha_m T/\beta_m) = \alpha_j T/\beta_j, \quad (i \neq j).
$$
 (10)

:From *l'Hospital's* rule it follows

$$
\lim_{x_i \to 0} (H^E / G^E) = H_i^{E \otimes} / \mu_i^{E \otimes} \tag{11a}
$$

$$
\lim_{x_i \to 0} (V^E / G^E) = V_i^{E \infty} / \mu_i^{E \infty}.
$$
\n(11b)

Combination of eq. $(11b)$ with eq. (7) gives

$$
\lim_{x_i \to 0} (VE/G^E) = \beta_j/(\alpha_j T), \quad (i \neq j).
$$
 (12)

Using eq. (12) and eq. (10) , we now reduce eq. (9) to

$$
\lim_{x_i \to 0} (H^E / G^E) = 2, \quad (i = 1, 2). \tag{13}
$$

It is interesting to note that in eq. (13) neither the expansivity, compressibility, nor the excess volume or the temperature appear as parameters. The approximation used in eq. (7) imposes, however, a restriction on the sign of the limiting values of the excess functions. Considering $\beta_i/(\alpha_i T) > 0$, the signs of $V_i^{E\infty}$ and $\mu_i^{E\infty}$ can not be different. Comparison of eq. (13) and eq. (11a) shows, on the other hand, that the sign of H_1^E ^{∞} must agree with that of μ_i^E ^{∞} and, as a consequence, also agree with that of $V_i E^{\infty}$.

Eq. (1) relates G^E to G^* . If ΔS^c is nearly ideal, then $G^E = G^*$ and eq. (13) becomes identical to the empirically obtained 5 eq. (5). It is possible to extend eq. (7) to include *Scatchard Hildebrand* type solutions in which H_i^E and V_i^E are both positive and μ_i^E may be negative, provided that $G^* > 0$ over the whole concentration range. Then in all relations the excess functions are to be replaced by G^* and its derivatives, H^E remaining unchanged $(H^E = H^*)$, since the combinatorial part of eq. (1) does not contribute to the enthalpy of mixing. With regard to the restriction $G^* > 0$ required by the *Scatchard*-*Hildebrand* concept, the correlation scheme used by *Funk* and *Prausnitz* should not be applied to systems with $H_i^{E\omega}$ or $V_i^{E\omega} < 0$.

Knowledge of $\lim_{M \to \infty} (H^E/G^*)$ at $x_i \to 0$ allows estimation of the enthalpy of mixing of binary nonassoeiated solutions at all compositions in cases where G^E is given at one temperature only⁵.

References

- ¹ *M. D. Donohue and J. M. Prausnitz, Canad. J. Chem.* **53**, 1586 (1975).
- ² *P. J. Flory, J. Chem. Phys.* **10**, 51 (1942).
- *a M. L. Huggins,* Ann. N. Y. Acad. Sci. 43, 1 (1942).
- *4 j. H. Hildebrand* and *R. L. Scott,* The Solubility of Noneleetrolytes. New York: Dover Publ. Inc. 1964.
- ⁵ E. Liebermann and *V. Fried*, Ind. Engng. Chem., Fundam. **11**, 350 (1972).
- ⁶ E. W. Funk and *J. M. Prausnitz*, Ind. Engng. Chem. 62 (9), 8 (1970).

Correspondence and reprints: *Dr. E. Liebermann Institut [i~r Physikalische Chemic* $Universität$ *Wien* $W\ddot{a}hringer$ *Straße* 42 *A-J090 Wien Austria*